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Abstract

This study addresses the conjugate heat transfer problem of thermally developing, hydrodynamically developed tur-

bulent flow in a circular pipe. An inverse method is used to estimate the unknown heat flux on the external surface of

the circular pipe based on temperature measurements taken at several different locations within the fluid. The present

approach rearranges the matrix forms of the governing differential equations, and then applies the linear least-squares-

error method to determine the unknown boundary conditions of the pipe flow. The results confirm that the proposed

method is capable of yielding accurate results even when errors in the temperature measurements are present, and that

the accuracy of the estimated results is improved by taking temperature measurements in locations close to the inner-

wall.
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1. Introduction

It is well-known that conjugate heat transfer, in

which interaction occurs between the conduction effects

in a solid wall and the convection effects within a fluid

flowing around it, occurs in many engineering devices.

A familiar example is that of a heat exchanger, in which

there is an interaction between the conduction in the

pipe wall and the convection in the fluid flowing over

that wall. A further example of practical importance is

the flow of a fluid over fins. In this case, valuable design

information can be obtained by simultaneously analyz-

ing the conduction in the fin and the convection in the
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fluid. A final significant example is that of the cooling

rods within a nuclear reactor.

In the case of thin-walled pipes, the boundary

conditions at the external surface are the same as those

at the internal solid–fluid interface, and hence, early

researchers neglected wall conduction effects and consid-

ered that the conditions on the external surface of the

pipe also impose upon the surface of the inner-wall.

However, for conjugate heat transfer in thick-walled

pipes, the boundary conditions imposed at the external

surface are different from those which exist at the inter-

nal surface. The problem of conjugate heat transfer has

already been examined by a number of researchers [1–4].

Generally, these papers reveal that a substantial amount

of heat transfer to the fluid can occur in the unheated

sections of the pipe due to wall conduction effects. These

effects are more pronounced when the solid-to-fluid

thermal conductivity ratio ksf is high and the inner-wall
ed.
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Nomenclature

A constant matrix constructed from thermal

properties and spatial coordinates

B coefficient matrix of C

Bi Biot number

C vector constructed from the unknown

boundary conditions

cf local friction coefficient

D vector constructed from the boundary con-

ditions

E product of A�1 and B

F error function

h heat convection coefficient

k thermal conductivity

Ld, Lc, Lu lengths of the downstream, cooled and

upstream sections

Pe Peclet number

Pr Prandtl number

q heat flux on the outer-wall of the pipe

R reverse matrix

r radial coordinate

Re Reynolds number

T temperature vector

T temperature

u fluid axial velocity

us friction velocity

x axial coordinate

y distance from the wall

Greek symbols

a thermal diffusivity

Dx axial step size

Dr radial step size

r standard deviation of the measurement

error

m kinematic viscosity

x random variable

Subscripts

exact exact temperature

f fluid

in inlet

iw inner-wall

i, j, J indices

jw index of radial coordinate at inner-wall

m mean

measured measured temperature

ow outer-wall

s solid

t turbulent

Superscript

(�) dimensionless quantity
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radius ratio �riw ¼ riw=row is low. In this situation, the

thermal boundary conditions existing at the internal sur-

face are not known a priori, and hence, the energy equa-

tions must be solved under the conditions of

temperature and heat flux continuity.

Recently inverse heat conduction problems (IHCPs)

have been analyzed for the situations where a direct

measurement of the thermal boundary behavior is diffi-

cult, or indeed impossible, to carry out. Additionally,

using direct measurement results to evaluate the heat

loss in situations of this type is also very complex. Var-

ious analytical and numerical approaches have been

proposed to overcome these technical limitations. For

example, Chen and Lin [5] have presented a hybrid

method of the Laplace transform technique and finite-

difference method with a sequential in-time concept to

estimate the unknown surface temperature of a plane

plate in a two-dimensional IHCP using temperature

measurements taken from within the plate. Further-

more, a method utilizing a boundary element inverse

technique has also been developed for the estimation

of local heat transfer coefficients on the surface of arbi-

trarily shaped solids [6]. Lin et al. [7] applied the finite-
difference method with the linear least-squares-error

method to estimate the thermal behaviors at the center

and surface of a heated cylinder positioned normally

to a turbulent air stream. Several researchers have also

investigated the inverse problem related to the estima-

tion of the thermophysical properties of a heat-conduct-

ing medium. Kim and Lee [8] focused on the estimation

of the temperature-dependent thermal conductivity and

volumetric heat capacity of a fluid flowing in a circular

duct using the parameter estimation technique. Finally,

Sawaf et al. [9] adopted an iterative procedure based

upon minimizing the sum of squares function, and the

Levenberg–Marquardt method, to estimate the linearly

temperature-dependent thermal conductivity and spe-

cific heat capacity of an orthotropic solid.

Many researchers have used the temperature history

and distribution within a fluid to determine the bound-

ary conditions of the fluid flow. For example, Jian and

Adriane [10] estimated the spatially non-uniform wall

heat flux in a thermally developing hydrodynamically-

developed turbulent flow in a circular pipe by means

of finite element interpolation and the Levenberg–

Marquardt method. Additionally, Park and Lee [11]



Fig. 1. System under consideration. Note that the velocity

profile is fully developed and that the inlet temperature is

constant. (q(x) denotes the outer-wall heat flux function.)
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employed an inverse technique using the Karhunen–

Loève Galerkin procedure to evaluate numerically the

unknown functions of the wall heat flux for laminar flow

inside a duct. Meanwhile, Bokar and Özisik [12] applied

the conjugate gradient method of minimization with an

adjoint equation to estimate the time-varying inlet tem-

perature for laminar flow inside a parallel plate duct. Fi-

nally, Li and Yan [13] applied the same inverse method

to estimate the space- and time-dependent wall heat flux

for unsteady turbulent forced convection between paral-

lel flat plates. However, these approaches all involved an

iterative computational approach, and furthermore,

they all neglected the effects of heat conduction within

the wall in the vicinity of the solid–fluid interface.

The present study proposes an efficient technique

which uses the linear least-squares-error method to esti-

mate the unknown outer-wall heat flux for conjugate

heat transfer within a thermally developing, hydrody-

namically developed turbulent flow in a circular pipe.

The proposed inverse method is used to solve the steady

two-dimensional conduction equation for the pipe wall

and the steady two-dimensional convection equation

for the flowing fluid simultaneously. The method re-

quires no prior knowledge of the functional form of the

unknown wall heat flux, and yields solutions for the un-

known conditions within a single computational itera-

tion. The results confirm that the proposed method is

capable of providing precise predictions of the unknown

outer-wall temperature, and heat flux. As when using tra-

ditional IHCPs to solve unknown conditions (e.g. local

heat flux, local Nusselt numbers, temperature, geometry,

etc.), it is shown that the precision of the estimated re-

sults increases as the location of the temperature measur-

ing points approaches that of the unknown quantities.
2. Physical model and governing equations

The present study considers a system in which a New-

tonian fluid of constant properties flows with steady tur-

bulent motion in a circular pipe. The fluid temperature

at the inlet (x = �Lu) is assumed uniform and equal to

Tin, and that the ambient air around the pipe is at a tem-

perature of T1. As the fluid passes through the pipe,

some of its heat is removed through the pipe wall via

conduction. This results in an uncertain, spatially non-

uniform, heat flux _qðxÞ distribution along the surface

of the outer-wall. In determining the values of this

uncertain heat flux, the current study adopts the follow-

ing simplifications:

1. Due to the symmetrical characteristics of the current

problem, the domain need only consider one half of

the pipe flow, and this flow can be assumed to be

two-dimensional.
2. The pipe wall is assumed to be homogeneous with a

constant thermal conductivity, ks. Furthermore, the

wall has a finite thickness. The fluid is assumed to

be incompressible, homogeneous, and to have a con-

stant thermal conductivity, kf.

3. An adiabatic condition is applied in the upstream

region, i.e. �Lu 6 x < 0, and in the downstream

region, i.e. Lc < x 6 Lc + Ld. Accordingly, the fluid

and the pipe wall at x = �Lu are assumed to of equal
temperature, i.e. Ts = Tf = Tin.

4. The pipe length is such that a fully developed flow is

established at the entrance and exit regions.

Fig. 1 presents a schematic representation of the con-

sidered pipe flow and conjugate heat transfer system.

Meanwhile, Fig. 2 shows the detailed geometry, compu-

tational grid, and four types of measuring location con-

sidered in the present investigation.

The governing equations for the temperature field of

the pipe flow can be expressed by the following differen-

tial equations:

In the wall region:

1

r
o

or
r
oT ðx;rÞ

or

� �
þ o

ox
oT ðx;rÞ

ox

� �
¼ 0 ð1aÞ

at x¼�Lu and riw6 r6 row; T sðx;rÞ¼ T in¼ const.
ð1bÞ

at r¼ row and 06 x6Lc;

_qðxÞ ¼ �ks
oT ðx;rÞ

or

� �
r¼row

¼ hðT owðx;rowÞ�T1Þ ð1cÞ

In the fluid region:

uðrÞoT ðx; rÞ
ox

� 1
r
o

or
rðaþ atÞ

oT ðx; rÞ
or

� �
¼ 0 ð2aÞ

at x¼�Lu and 06 r6 riw; T fðx; rÞ ¼ T in ¼ const.

ð2bÞ
at r¼ 0 and �Lu 6 x6 LcþLd;

oT ðx; rÞ
or

� �
r¼0

¼ 0 ð2cÞ
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Fig. 2. Detailed dimensionless geometry and computational grid of a half domain of the pipe flow with three types of measuring point

locations, i.e. (a) Type 1, (b) Type 2, (c) Type 3 and (d) Type 4.
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At the interface between the pipe wall and the fluid

inside the pipe (r = riw):

oT fðx; riwÞ=or ¼ ksfoT sðx; riwÞ=or ð3aÞ
T sðx; riwÞ ¼ T fðx; riwÞ ð3bÞ

where row and riw are the outer and inner pipe radii,

respectively. The following parameters are defined: Tow
is the temperature on the external surface of the pipe,

_qðxÞ is the local heat flux on the external surface of the
pipe, u(r) is the hydrodynamically developed velocity

profile, a is the thermal diffusivity, at is the turbulent
thermal diffusivity, k is the thermal conductivity, and h

is the heat-transfer coefficient.

The following scale factors are introduced to reduce

the governing equations and the boundary conditions

of Eqs. (1a)–(3b) to dimensionless forms, i.e.:
�u ¼ u
us

; T ¼ T
T in

; �r ¼ r
row

; �x ¼ x
L
; �q ¼ _qrow

ksT in
where us ¼ um
ffiffiffiffiffiffiffiffiffi
cf=2

p
. The friction coefficient that fits the

experimental data very well for 104 < Re < 5 · 104,
cf
2
¼ 0.039Re�0.25, is substituted [14].
The governing parameters for conjugate conduction

and turbulent forced convection heat transfer in the pipe

subjected to non-uniform heat flux are the Reynolds

number Res = 2riwus/m, the Prandtl number Pr = m/a,
the turbulent Prandtl number Prt = mt/at, the Biot num-
ber Bi = hrow/ks, and the solid-to-fluid thermal conduc-

tivity ratio ksf = ks/kf.

The fully developed velocity profile of turbulent flow

of a Newtonian fluid in a circular pipe is obtained from

the following expression for the dimensionless velocity

in wall parameters [14],
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�u ¼ 2.5 ln �y
1.5ð1þ r=riwÞ
1þ 2ðr=riwÞ2

" #
þ 5.5 ð4Þ

where �y ¼ yus=m ¼ ðriw � rÞus=m.
The turbulent Peclet number Pet is given by the fol-

lowing expression,

Pet ¼
mt
m
Pr ð5Þ

where mt
m ¼

K�y
6
1þ r

riw

� �
1þ 2 r

riw

� �2� �
. This equation is ob-

tained from an empirical equation proposed by Reic-

hardt [15]. And the Eq. (4) is developed from that with

K = 0.4. The value of the Prandtl number Pr is taken

to be 0.7. The turbulent Prandtl number Prt is given

by the following expression, which fits well available

experimental data [14],

Prt ¼
1

1
2Prt1

þ CPet
ffiffiffiffiffiffiffi
1

Prt1

q
� ðCPetÞ2 1� exp � 1

CPet
ffiffiffiffiffiffiffi
Prt1

p
� �� �

ð6Þ

where C = 0.3 and Prt1 ¼ 0.85.

The number of independent dimensionless parame-

ters in this problem is quite large. A parametric study

of all individual parameters would require a vast set of

results, and is not the principal objective of the present

study. Hence, the values of certain dimensionless para-

meters are fixed, and just two heat transfer capability

cases are examined, i.e. a low-Bi case with Bi = 0.05,

ksf = 44.6 and Re = 2riwum/m = 3 · 104, and a high-Bi

case with Bi = 0.1, ksf = 44.6 and Re = 3 · 104.
The value of the dimensionless length of the cooled

section, Lc ¼ Lc=row, is specified as equal to 50, which is
sufficiently long to observe the thermal development of

the flow, while being sufficiently short to restrict the nec-

essary computational effort to an acceptable level. Mean-

while, the dimensionless lengths of the upstream and

downstream sections, Lu ¼ Lu=row and Ld ¼ Ld=row, are
set equal to 0.5Lc, which is long enough to account for
the wall axial conduction effects and to ensure that the

outlet boundary condition ðoT=o�x ¼ 0Þ is appropriate.
The inner-wall radius ratio, �riw ¼ riw=row, is set equal to
0.6. Finally, the dimensionless ambient temperature is

set equal to 0.1.
3. Numerical method

3.1. Direct problem

The present study employs the finite-difference

method to analyze the direct problem. After discretiza-

tion, the dimensionless governing equations and bound-

ary conditions obtained from Eqs. (1a)–(2c) can be

expressed in the following recursive forms:
In the wall region:

T i;jþ1 � 2T i;j þ T i;j�1

ðD�rÞ2
þ 1

�rj

T i;jþ1 � T i;j�1

2D�r

þ 1

L
2

c

� T iþ1;j � 2T i;j þ T i�1;j

ðD�xÞ2
¼ 0 ð7aÞ

at �x ¼ � 1
2

and �riw 6 �r 6 1; T 0;j ¼ T in ¼ 1 ð7bÞ

at �r ¼ 1 and 0 6 �x 6 1;

�qi ¼ � T i;J � T i;J�1

D�r
¼ Bi � T i;J � T1

� 
ð7cÞ

In the fluid region:

1

2�riwLc
� ResPr � �ui;j

T iþ1;j � T i�1;j

2D�x

� 1þ
Petj
Prtj

� �
T i;jþ1 � 2T i;j þ T i;j�1

ðD�rÞ2
þ 1

�rj

T i;jþ1 � T i;j�1

2D�r

" #
¼ 0

ð8aÞ

at �x ¼ � 1
2

and 0 6 �r 6 �riw; T 0;j ¼ T in ¼ 1 ð8bÞ

at �r ¼ 0 and � 1

2
6 �x 6

3

2
;

T i;1 � T i;0

D�r
¼ 0 ð8cÞ

Substituting Eq. (3b) into the discretization equation

obtained from the energy equation (Eq. (3a)) at the

interface between the wall and the fluid inside the pipe

gives the dimensionless inner-wall temperature as:

T i;jw ¼ ksf
ksf þ 1

T i;jwþ1 þ
1

ksf þ 1
T i;jw�1 ð9Þ

In Eqs.(7a)–(9) , D�r and D�x are the increments in the
dimensionless spatial coordinates, T i;j is the dimension-

less temperature at the grid point (i, j), subscript i is

the ith grid along the x-coordinate direction, subscript

j is the jth grid along the r-coordinate direction, �qi is
the dimensionless local heat flux on the outer-wall of

the ith grid along the x-coordinate direction, subscript

J represents the grid on the boundary r = row, and sub-

script jw represents the grid on the inner-wall, r = riw.

Regarding the treatment of the boundary conditions

of Eq. (7c), the number of segments used on the bound-

ary equals the number of nodes. Hence, the values of the

dimensionless temperature, T i;J , at different nodes on the

boundary can be treated as distinct. According to the

inner-wall temperature expression given in Eq. (9), the

dimensionless inner-wall temperature, T i;jw , which is ex-

pressed by T i;jwþ1 at the first radial grid point in the pipe

wall and by T i;jw�1 at the last radial grid point in fluid,

will be eliminated during algebraic vector manipulation.

That is to say, the boundary conditions existing at the

solid–fluid interface will be avoided, which significantly

simplifies the subsequent analysis task.

As shown below, the heat conduction and convection

equations can be combined to an equivalent matrix

equation, which permits all of the unknowns to be
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derived within a single computational iteration. Using

the recursive forms an equivalent matrix equation for

the direct analysis can be expressed as

An	nTn	1 ¼ Dn	1 ð10Þ

where matrix A is a constant matrix constructed from

the thermal properties and spatial coordinates of the sys-

tem. The components of vector T are the dimensionless

temperatures at discrete points within the pipe wall and

the fluid, while the components of matrix D are the func-

tions of the dimensionless boundary conditions. The

matrix elements of A, T and D are described in detail

in Appendix A. The aim of the direct analysis process

is to determine the dimensionless temperature at each

node when all the boundary conditions and thermal

properties are known. This is accomplished by using

the Gauss elimination method to solve the direct prob-

lem expressed in Eq. (10) above.

In the present study, the dimensionless temperature

data obtained from the direct problem are subsequently

employed in the inverse problem to represent the mea-

sured temperature values of the fluid.

3.2. Inverse problem

The aim of the inverse problem is to determine the

unknown thermal boundary conditions by using the

temperature measurements taken from within the fluid

in the pipe. Using the inner-wall temperature expression

given in Eq. (9), the recursive forms of the governing

equations given in Eqs. (7a) and (8a), and the boundary

conditions given in Eqs. (7b), (7c), (8b) and (8c), can be

rearranged in the form of a linear inverse model given

by:

An	nTn	1 ¼ Bn	mCm	1 ð11Þ

In the inverse analysis process, matrix A is con-

structed from known physical models and numerical

methods, while vector T is composed of the temperature

values measured by thermocouples at various locations

within the fluid. Matrix B is the coefficient of vector C,

which is composed of the unknown boundary condi-

tions, including the inlet temperature and the tempera-

tures, heat flux at discrete grid points along the

external surface of the pipe. A major advantage of the

proposed inverse approach is that the construction of

the linear inverse model given in Eq. (11) requires no ex-

plicit assumptions regarding the functional forms of the

unknown thermal quantities.

Finally, the temperature measurements are substi-

tuted into the inverse model of Eq. (11), which can then

be solved using the following procedure:

Suppose that the estimated conditions of Cestimated
can be obtained from the given estimated temperatures,

Testimated, then:
ATestimated ¼ BCestimated ð12Þ

Multiplying both sides by A�1 gives:

Testimated ¼ A�1BCestimated ¼ ECestimated ð13Þ

where E = A�1B.

Comparing the estimated temperatures, Testimated,

with the measured temperatures, Tmeasured, yields an

error function, F, which can be represented as:

F ¼ ðTestimated � TmeasuredÞTðTestimated � TmeasuredÞ ð14Þ

Substituting Eq. (13) into Eq. (14) gives the following

matrix equation for this error function:

F ¼ ðECestimated � TmeasuredÞTðECestimated � TmeasuredÞ
¼ CT

estimatedE
TECestimated � TT

measuredECestimated

� CT
estimatedE

TTmeasured þ TT
measuredTmeasured ð15Þ

This error function can then be minimized by differ-

entiating F with respect to Cestimated as

oF

oCestimated

¼ 0 ð16Þ

Following a process of mathematical manipulation, it

can be shown that:

ETECestimated ¼ ETTmeasured ð17Þ

Hence, vector Cestimated can then be solved as follows:

Cestimated ¼ ðETEÞ�1ETTmeasured ¼ RTmeasured ð18Þ

where R = (ETE)�1ET is the reverse matrix of the un-

known boundary conditions. The expressed process is

derived by the least-squares-error method.

A common experimental approach is to measure only

a few points when taking inverse problems. Therefore,

when solving Eq. (18), it is only necessary to construct

the parts of matrix Rm·n and vector Tn·1 which corre-

spond to the measuring point locations in order to esti-

mate the unknown boundary conditions of the problem.

Consequently, the sizes of matrix Rm·n and vector Tn·1
reduce to Rm	n0 and Tn0	1, respectively, where n

0 < n

and n 0 indicates the number of measuring points. It is

obvious that the orders of the matrices are determined

by the number of measuring points employed. In gen-

eral, the accuracy of the estimated results is improved

by selecting a larger number of measuring. However,

this increases the computational and experimental costs,

and hence, it is necessary to specify a number of measur-

ing locations which yields an acceptable compromise be-

tween the precision of the results and the associated

process costs.

In the present study, the inverse problem of Eq. (18)

is solved by means of the linear least-squares-error

method since this method removes the need for iterative

computation, and enables the problem to be solved in a
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linear domain. Furthermore, it can verify that the final

solution of Eq. (18) from the proposed method is equiv-

alent to the necessary condition of the optimum from

the traditional non-linear least-squares approach [16–

18]. Hence, the linear least-squares-error method can

be used in place of the traditional non-linear least-

squares approach, hence eliminating the requirement

for an iterative process and an optimization phase when

solving the inverse heat transfer problem.

A necessary and sufficient condition for Eq. (18) is

that the rank of the reverse matrix R should be equal

to the number of unknown variables. Therefore, it is

necessary to specify a sufficient number of measuring

points. In other words, if the rank of the reverse matrix

R is less than the number of unknown elements of vector

C, the number of measuring points must be increased.
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Fig. 3. Estimated dimensionless outer-wall temperature distri-

butions for different types of measuring locations and measure-

ment errors of r = 1%, 3% and 5% for the cases of: (a) Bi = 0.05

and (b) Bi = 0.1.
4. Results and discussion

This paper considers the conjugate heat transfer case

of hot fluid flowing through a pipe. Hence, the analyzed

IHCP is one of heat conduction in the pipe wall on devel-

oping, turbulent forced convection flow and heat transfer

inside the pipe. As the fluid flows through the pipe, heat is

removed through the pipe walls via conduction, and is

subsequently released to the environment. This paper

analyzes the heat transfer by forced convection in inter-

nal turbulent flow which interacts with conduction in

the pipe wall. The axial conduction of the pipe wall has

a significant influence on both the upstream and down-

stream sections of the flow. In other words, the externally

insulated segment of the pipe, located upstream or down-

stream of the cooled section, enables the fluid to release

heat via axial conduction effects through the wall, and

then releases this heat into the surrounding environment

on the cooled section. The fluid is cooled both in the re-

gion x < 0 and in the region xP 0. Therefore, axial con-

duction reduces the maximum outer-wall temperature at

the entrance of the cooled section (x = 0).

In order to investigate the relationship between the

locations of the measuring points and the accuracy of

the corresponding estimated results, four different types

of measuring point locations are considered, as shown in

Fig. 2. The sensors are located at the grid points marked

in Fig. 2, while the dimensionless temperature data used

in the simulation process are obtained from the solution

to the direct problem.

In practice, the temperature measurements always

contain some degree of error, whose magnitude depends

upon the particular measuring method employed. There-

fore, the simulated temperature measurements adopted

in the current inverse problem are also considered to in-

clude measurement errors. For reasons of practicality,

the present study adds a random error noise to the exact

temperature values computed from the direct problem.
Hence, the measured dimensionless temperature,

Tmeasured, is expressed as:

Tmeasured ¼ T exactð1þ xrÞ ð19Þ

where T exact is the exact dimensionless temperature, x is

a random variable generated by the DRNNOR subrou-

tine of the IMSL [19], and r is the standard deviation of
the measurement error. For normally distributed ran-

dom errors, the probability of a random value, x, lying
in the range �2.576 < x < 2.576 is 99% [20].

Fig. 3 presents a comparison between the predicted

and the exact outer-wall temperatures for different types

of measuring point location in the cases of Bi = 0.05 and

Bi = 0.1. In general, the results reveal that for a measure-

ment error of r = 1%, there is good agreement between
the predicted and the exact results for Type 1 and Type

2 measuring locations. In IHCP problems, it is known

that the precision of the estimated results is significantly

influenced by the magnitude of the measurement errors.

When measurement errors of r = 3% and 5% are consid-

ered, it is noted that the errors in the estimated results
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Fig. 4. Estimated dimensionless local heat flux distributions

along the outer-wall for different types of measuring point

locations with measurement errors of r = 1%, 3% and 5% for

the cases of: (a) Bi = 0.05 and (b) Bi = 0.1.
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increase irrespective of which measuring point location

type is specified, i.e. Type 1 or Type 2. Nevertheless, it

can be observed that the results are still satisfactory.

Considering the case where measurement errors of

r = 3% and r = 5% are introduced, it can be seen that

both sets of estimated results provide reasonable

approximations to the exact solutions for Type 1 mea-

suring point locations, but that the estimated results

associated with a measurement error of r = 3% are the

more accurate. Consequently, it can be concluded that

large measurement errors will degrade the performance

of the proposed inverse method.

The present study also considers the relationship be-

tween the number of sensors employed and the accuracy

of the estimated results. The results of Fig. 3 reveal that

when measurement errors are considered, the accuracy

of the results provided by the inverse method using

Type 3 temperature measurements (i.e. 26 measuring

points) is superior to that obtained using Type 1 (i.e.

13 measuring points). Therefore, it can be concluded

that the use of more measuring points improves the per-

formance of the proposed inverse method when the

measured temperatures are subject to high measurement

errors.

Fig. 4 presents a comparison between the estimated

results and the exact solutions of the local dimensionless

heat flux obtained using the three types of measuring

point locations for measurement errors of r = 1%,
r = 3%, and r = 5% in the cases of Bi = 0.05 and

Bi = 0.1. The results demonstrate that an increase in

the Bi number increases the heat flux on the external sur-

face of the pipe at its entrance. It is also observed that

the accuracy of the estimated results decreases as the

measurement error is increased. Furthermore, it is obvi-

ous that the estimations are accurate and robust when a

measurement error r = 1% is considered, and that the

results are still satisfactory even when the measurement

error increases to 3%. It indicates that the precision of

the estimations depends strongly on the accuracy of

the measurements in IHCP.

From the results of Fig. 4, it demonstrates that the

estimated results associated with the Type 2 measuring

point locations are inferior to those obtained from Type

1 and Type 3 measurements. This suggests that the pre-

cision of the inverse model is improved when the sensors

are located closer to the surface whose unknown bound-

ary conditions are to be determined.

Meanwhile, Fig. 5 shows that the proposed inverse

method is still capable of yielding satisfactory results

even when a measurement error (r = 5%) is introduced.
The accuracy of the results provided by the inverse

method using Type 4 temperature measurements is supe-

rior to that obtained using Type 3. This again confirms

that the accuracy of the inverse method is improved

when the sensors are located close to the solid–fluid

interface, i.e. as the locations of the sensors approach
the outer-wall whose unknown boundary conditions

are to be predicted, the accuracy of the estimated results

increases correspondingly.

The estimated distributions of Biot number with

measurement errors r = 0%, r = 1% and r = 3% are

shown in Fig. 6 for comparison, when the measuring

location Type 1 is adopted. It reveals that the estimated

and exact Biot number are in a very good agreement

without considering measurement errors (r = 0%). Fur-
ther, it is also obvious that the estimated results are

accurate and robust when measurement error r = 1%
is included. When measurement error is r = 3%, the re-
sults are still satisfactory.

In a heating process, we could also solve an inverse

conjugate heat transfer problem to estimate unknown

outer-wall heat flux in a thermally developing, hydrody-

namically developed turbulent flow in a circular pipe

based on temperature measurements obtained at several

different positions in the fluid. Fig. 7 considers the accu-

racy of the proposed method in estimating three differ-

ent outer-wall heat flux functions estimated using Type



x/L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Exact
Estimated (Type 3)
Estimated (Type 4)

Bi=0.05

qr k
T

c

__
__

__
_

sow
.

x/L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Exact
Estimated  (Type 3)
Estimated  (Type 4)

qr k
T

c

__
__

__
_

ow
.

Bi=0.1

σ=5%

σ=5%

a

b

in
s

in

Fig. 5. Estimated dimensionless local heat flux distributions

along the outer-wall with measurement errors of r = 5% with

Type 3 and Type 4 measuring point locations for the cases of:

(a) Bi = 0.05 and (b) Bi = 0.1.
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Fig. 7. Three test cases considered for outer-wall heat flux

functions to examine the accuracy of inverse analysis with

measurement errors of r = 0%, 1% and 3% with Type 1

measuring point locations, i.e. (a) uniform, (b) triangular ramp

and (c) sine curve.
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1 measuring point locations and measurement errors of

r = 0%, r = 1% and r = 3%. In the case where measure-
ment errors are neglected, it can be seen that the esti-
mated outer-wall heat flux distributions are in good

agreement with the exact solutions for each of the three

heat flux functions. Furthermore, it is confirmed that the

estimated result exists and is unique through the verifica-

tion of the proposed method. However, when measure-

ment errors are considered, it is noted that there is a

slight deviation between the estimated and exact solu-

tions, and that the extent of this deviation is dependent

upon the magnitude of the measurement errors. Conse-

quently, the proposed inverse method is capable of yield-

ing accurate results regardless of the magnitude of the

outer-wall heat flux.
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5. Conclusion

This paper has successfully applied an inverse

method to the estimation of the unknown boundary

conditions associated with turbulent flow of a hot fluid

within a pipe. The influences of conduction effects within

the pipe wall on the thermal development of the turbu-

lent flow in a pipe with a finite heated/cooled length have

been considered. The results of the inverse method can

be derived within a single iteration, and demonstrate

that the uniqueness of the solution can be easily identi-

fied. The proposed method has the further advantages

that the unknown quantities of the thermal boundary

conditions can be estimated directly, and that the inverse

problem can be solved in a linear domain. It only takes

about 9s of CPU time per computation. The CPU times

correspond to a Intel Pentium 1 GHz processor, with

512MB RAM, running under the Microsoft Fortran

PowerStation 4.0 platform.

The validity of the proposed method has been con-

firmed through the presentation of two test cases. In

the first case, the heat flux to the environment in a cool-

ing process has been presented for Biot numbers of 0.05

and 0.1, respectively. Therefore, the outer-wall heat flux

of the pipe flow is an uncertain, spatially non-uniform

distribution. In the second case, three outer-wall heat

flux distributions in a heating process have been consid-

ered when estimating the outer-wall heat flux from the

simulated measured temperature data. Since the pro-

posed method does not require any information regard-

ing the functional form of the outer-wall heat flux, the

estimated results are seen to be more accurate and robust

when the temperature measurement points are located

closer to the boundary of interest, i.e. the outer-wall of

the pipe in this case. The present results have revealed

that the estimated results are accurate even when a mea-

surement error of 3% is introduced. It has also been

shown that the use of more measuring points within

the fluid enhances the stability and accuracy of the esti-

mated results when large measurement errors are pres-

ent. In conclusion, the results have confirmed that the

proposed inverse method is an accurate, robust, and effi-

cient technique for solving the conjugate heat transfer

problem associated with turbulent pipe flow.
Appendix A

We can rewrite Eqs. (7a) and (8a) in the following

form:

ajT i;j þ bjT iþ1;j þ cjT i�1;j þ djT i;jþ1 þ ejT i;j�1 ¼ 0

where aj–ej are the constant parameters constructed

from the thermal properties and spatial coordinates of

the system. And the equations can be expressed as a

matrix model in linear algebra.
AT ¼ D ¼ BC

where

A ¼

A1
. .
. . .

.
0

. .
. . .

.
djI 0

. .
.

ejI Aj djI
. .
.

0 ejI . .
. . .

.

0 . .
. . .

.
AJ

2
66666666666664

3
77777777777775

I �J	I �J

;

Aj ¼

. .
. . .

.
0

. .
. . .

. . .
.

0

. .
.

cj aj bj . .
.

0 . .
. . .

. . .
.

0 . .
.

aj þ bj

2
6666666666664

3
7777777777775

I	I

;

A1 ¼

. .
. . .

.
0

. .
. . .

. . .
.

0

. .
.

c1 a1 þ e1 b1 . .
.

0 . .
. . .

. . .
.

0 . .
.

a1 þ e1 þ b1

2
6666666666664

3
7777777777775

I	I

;

T ¼ ½T1 � � � Tj � � � TJ �T;

Tj ¼ ½ T 1;j � � � T i;j � � � T I ;j �T;
I is an identity matrix;

D ¼ ½D0 � � � Dj � � � DJ �T;
Dj ¼ �cjT in 0 � � � � � � 0

� �T
1	I

;

DJ ¼ �ðcJ þ dJ ÞT in �dJT i;J � � � � � � �dJT i;J

� �T
1	I

;

B ¼

B0

..

.

Bj

..

.

BJ

2
666666664

3
777777775
; Bj ¼

�cj 0

0

. .
.

. .
.

0 0

2
66666664

3
77777775
;

BJ ¼

�ðcJ þ dJ Þ 0

�dJ

. .
.

. .
.

0 �dJ

2
66666664

3
77777775
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C ¼ T in T 1;J T 2;J � � � T I ;J

� �T
. As above, the

approximation model becomes linear combinations of

the boundary conditions for the direct problem. Fur-

thermore, it can lead to solving the inverse problem

through the linear least squares error method.
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